the X-ray diffraction data and to Ms Fen-Ling Liao for plotting the figures.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SK1074). Services for accessing these data are described at the back of the journal.

References

Ahrland, S., Chatt, J. \& Davies, N. R. (1958). Q. Rev. Chem. Soc. pp. 265-276.
Barbucci, R., Cialdi, G., Ponticelli, G. \& Paoletti, P. (1969). J. Chem. Soc. A, pp. 1775-1777.
Bennett, M. A., Clark, R. J. H. \& Goodwin, A. D. J. (1967). Inorg. Chem. 6, 625-629.
Burmeister, J. L. (1990). Coord. Chem. Rev. 105, 77-133.
Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. \& White, P. S. (1989). J. Appl. Cryst. 22, 384-387.

Hay, R. W. \& Pujari, M. P. (1985). Inorg. Chim. Acla, 100, L1-L3.
Larson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall \& C. P. Huber, pp. 291-294. Copenhagen: Munksgaard.
Lu, T.-H., Chung, C.-S. \& Ashida, T. (1991). J. Chin. Chem. Soc. (Taipei), 38, 147-153.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Pearson, R. G. (1963). J. Am. Chem. Soc. 85, 3533-3539.
Sheldrick, G. M. (1985). SHELXTL Users Manual. Revision 5.1. Nicolet XRD Corporation, Madison, Wisconsin, USA.
Wu, D.-T. \& Chung, C.-S. (1986). Inorg. Chem. 25, 3584-3589.
Yingst, A. \& McDaniel, D. H. (1967). Inorg. Chem. 6, 1067-1070.

Acta Cryst. (1997). C53, 1600-1602

Tris(acetato-O, O^{\prime})(2,4-dimethoxyphenyl)lead(IV)

John Fawcett, ${ }^{a}$ Paul Jenkins, ${ }^{a}$ David R. Russell, ${ }^{a}$ Andrew J. Wood, ${ }^{a}$ Jan Wolters ${ }^{b}$ and Dick de Vos ${ }^{c}$
${ }^{a}$ Department of Chemistry, University of Leicester, Leicester LE1 7RH, England, ${ }^{b}$ Gorlaeus Laboratories, Division of Organometallic Chemistry, University of Leiden, PO Box 9502, 2300 RA Leiden, The Netherlands, and 'Medical Department, Pharmachemie BV, PO Box 552, 2003 RN Haarlem, The Netherlands. E-mail: jxf@leicester.ac.uk
(Received 24 March 1997; accepted I5 April 1997)

Abstract

The coordination around the Pb atom in the title compound, $\left[\mathrm{Pb}\left(\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{O}_{2}\right)\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{3}\right.$], can be described as distorted dodecahedral with O atoms of the bidentate acetate groups occupying six of the coordination sites and the remaining sites occupied by the bonded C atom of the 2,4-dimethoxyphenyl group and a methoxy O atom.

Comment

Little data has been published on the coordination of lead in organolead compounds. The Pb atom has approximate trigonal bipyramidal coordination with bridging acetate groups in $\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{PbOAc}\right.$] (Sheldrick \& Taylor, 1975). In $\left[\left(\mathrm{CH}_{3}\right)_{4} \mathrm{~N}\right]\left[\mathrm{Ph}_{2} \mathrm{~Pb}(\mathrm{OAc})_{3}\right]$, the metal atom is eight-coordinate with its ligands forming an approximate hexagonal bipyramid (Alcock, 1972). The O atoms around the Pb atom in $\left[\mathrm{Pb}(\mathrm{OAc})_{4}\right]$ form a flattened trigonal dodecahedron with no bridging acetate groups (Kamenar, 1963). In the isostructural $\left[\mathrm{Sn}(\mathrm{OAc})_{4}\right]$, the Sn atom has a pseudo-dodecahedral coordination with four bidentate acetate groups (Alcock \& Tracy, 1979); the Sn - O distances are, however, variable. In order to determine the coordination of the Pb atom in the title compound, (I), the structure was investigated by singlecrystal X-ray diffraction.

(I)

The molecular structure of (I) shows approximate mirror symmetry. All non-H atoms of the 2,4 -dimethoxyphenyl group, Pbl and one of the acetate groups lie in a plane [maximum deviation 0.114 (8) \AA, unit weights] which bisects the plane occupied by the two other acetate groups and Pbl [maximum deviation $0.166(6) \AA$] with an interplanar angle of $89.8(1)^{\circ}$. The coordination about Pbl can be described as distorted rhombic dodecahedral with the O atoms of the acetate groups occupying six of the coordination sites and the remaining sites occupied by the bonded carbon (C5) of the phenyl group and a methoxy O atom (O 2). The long $\mathrm{Pb} 1-\mathrm{O} 2$ bond [$2.874(5) \AA$] is facilitated by the significant distortion of the bond between Pbl and the phenyl group such that the angles $\mathrm{Pbl}-\mathrm{C} 5-\mathrm{C} 4$ and $\mathrm{Pbl}-\mathrm{C} 5-\mathrm{C} 6$ are 125.9 (5) and 112.7 (4) ${ }^{\circ}$, respectively.

Each of the bidentate coordinated acetate ligands have unequal $\mathrm{C}-\mathrm{O}$ bond distances with one longer (ca $2.5 \AA$) and one shorter ($c a 2.2 \AA$). A similar but less pronounced effect observed for the $\mathrm{Sn}-\mathrm{O}$ distances of $\left[\mathrm{Sn}(\mathrm{OAc})_{4}\right.$] is attributed to overcrowding of the coordination about the Sn atom. The longer $\mathrm{Pbl}-\mathrm{O}$ bond distances of (I) are similar to those found in the anion of $\left[\left(\mathrm{CH}_{3}\right)_{4} \mathrm{~N}\right]\left[\mathrm{Ph}_{2} \mathrm{~Pb}(\mathrm{OAc})_{3}\right]$ which are in the range $2.48(2)-2.63(2) \AA$. The four shortest edges of the polyhedron are those of the bidentate atom pairs, the $\mathrm{O} \cdots \mathrm{O}$ distances of the acetate groups
[2.182 (7)-2.185 (8) \AA] and $\mathrm{O} 2 \cdots \mathrm{C} 5$ [2.309 (7) Å]. One edge distance $[\mathrm{O} 4 \cdots \mathrm{O} 2.802$ (8) \AA] is isolated with six edge distances in a group between 3.04 and $3.19 \AA$.

Fig. 1. Molecular structure of the title compound showing the atom numbering scheme and 30% displacement ellipsoids.

Experimental

Compound (I) was prepared by the method described by De Vos, Spierenberg \& Wolters (1972). Crystals were obtained by recrystallization from dichloromethane and petroleum ether.

Crystal data

$\left[\mathrm{Pb}\left(\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{O}_{2}\right)\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{3}\right]$
$M_{r}=521.47$
Triclinic
$P \overline{1}$
$a=8.123(1) \AA$
$b=10.580$ (2) \AA
$c=10.981(2) \AA$
$\alpha=98.52(1)^{\circ}$
$\beta=101.76(1)^{\circ}$
$\gamma=105.97(1)^{\circ}$
$V=867.1(3) \AA^{3}$
$Z=2$
$D_{x}=1.997 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Siemens $P 4$ diffractometer ω scans

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 40 reflections
$\theta=4.8-12.5^{\circ}$
$\mu=9.764 \mathrm{~mm}^{-1}$
$T=190$ (2) K
Tablet
$0.39 \times 0.26 \times 0.06 \mathrm{~mm}$ Yellow

4175 reflections with $I>2 \sigma(I)$

Absorption correction:
analytical (ABSC in
SHELXTL/PC; Sheldrick, 1990)
$T_{\text {min }}=0.119, T_{\text {max }}=0.545$
5829 measured reflections
4997 independent reflections
$R_{\text {int }}=0.024$
$\theta_{\text {max }}=30^{\circ}$
$h=-1 \rightarrow 11$
$k=-14 \rightarrow 14$
$l=-15 \rightarrow 15$
3 standard reflections every 97 reflections intensity decay: $<2 \%$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.043$
$w R\left(F^{2}\right)=0.102$
$S=1.013$
4997 reflections
209 parameters
H -atom parameters
constrained
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0635 P)^{2}\right]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=3.733 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-3.335$ e \AA^{-3}
Extinction correction: SHELXTLIPC
Extinction coefficient: 0.0010 (5)

Scattering factors from International Tables for Crystallography (Vol. C)

Table 1. Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$

$\mathrm{Pb} 1-\mathrm{C} 5$	2.143 (6)	$\mathrm{Pbl-07}$	2.496 (5)
$\mathrm{Pbl}-\mathrm{O} 8$	2.177 (5)	$\mathrm{Pbl}-06$	2.511 (5)
$\mathrm{PbI}-\mathrm{O} 4$	2.198 (5)	$\mathrm{PbI}-\mathrm{O} 3$	2.587 (6)
$\mathrm{Pb} 1-\mathrm{O} 5$	2.201 (4)	$\mathrm{Pbl}-\mathrm{O} 2$	2.874 (5)
$\mathrm{C} 5-\mathrm{Pb} 1-\mathrm{O} 8$	147.5 (2)	$\mathrm{O} 7-\mathrm{Pbl}-\mathrm{O6}$	82.7 (2)
$\mathrm{C} 5-\mathrm{Pb} 1-\mathrm{O} 4$	114.5 (2)	$\mathrm{C} 5-\mathrm{Pbl}-\mathrm{O} 3$	91.4 (2)
$\mathrm{O} 8-\mathrm{Pbl}-\mathrm{O} 4$	88.1 (2)	$\mathrm{O} 8-\mathrm{Pbl}-\mathrm{O} 3$	83.6 (2)
$\mathrm{C} 5-\mathrm{PbI}-\mathrm{O} 5$	115.9(2)	$\mathrm{O} 4-\mathrm{Pbl}-\mathrm{O} 3$	53.6 (2)
$08-\mathrm{Pb}-\mathrm{O} 5$	90.2 (2)	$\mathrm{O} 5-\mathrm{Pbl}-\mathrm{O} 3$	132.4 (2)
O4-Pbl-O5	79.1 (2)	$07-\mathrm{Pb} 1-\mathrm{O} 3$	85.0 (2)
$\mathrm{C} 5-\mathrm{PbI}-\mathrm{O} 7$	92.4 (2)	$\mathrm{O} 6-\mathrm{Pbl}-\mathrm{O} 3$	166.8 (2)
$\mathrm{O} 8-\mathrm{Pbl}-\mathrm{O} 7$	55.2 (2)	$\mathrm{C} 5-\mathrm{Pbl}-\mathrm{O} 2$	52.37 (19)
$\mathrm{O} 4-\mathrm{Pbl}-\mathrm{O} 7$	128.9 (2)	$\mathrm{O} 3-\mathrm{Pb} 1-\mathrm{O} 2$	96.77 (19)
$\mathrm{O} 5-\mathrm{Pbl}-\mathrm{O} 7$	128.4 (2)	$\mathrm{O} 4-\mathrm{Pb} 1-\mathrm{O} 2$	76.40 (18)
$\mathrm{C} 5-\mathrm{Pb} 1-\mathrm{O} 6$	94.0 (2)	$\mathrm{O} 5-\mathrm{Pb} 1-\mathrm{O} 2$	74.82 (17)
$\mathrm{O} 8-\mathrm{Pbl}-\mathrm{O} 6$	85.3 (2)	$\mathrm{O} 6-\mathrm{Pb} 1-\mathrm{O} 2$	96.13 (18)
$\mathrm{O} 4-\mathrm{Pbl}-\mathrm{O} 6$	133.3(2)	$\mathrm{O} 7-\mathrm{Pb}-\mathrm{O} 2$	144.66 (15)
O5-Pbl-O6	54.7 (2)	$\mathrm{O} 8-\mathrm{PbI}-\mathrm{O} 2$	160.10(16)

A preliminary empirical absorption correction gave $R 1_{\text {(obs) }}=$ 0.0452 with residual electron density peaks of 2.30 and $-2.54 \mathrm{e} \AA^{-3}$. The full analytical absorption correction presented here gave lower R factors but higher residual electron density peaks (3.73 and $-3.34 \mathrm{e} \AA^{-3}$). The analytical correction has been chosen as the ratio $T_{\text {max }} / T_{\text {min }}$ is closer to that quoted by the Acta Crystallographica CIF checking procedures (9.33) than the empirical $T_{\text {max }} / T_{\text {min }}$ ratio (2.99).

Data collection: XSCANS (Fait, 1991). Cell refinement: XSCANS. Data reduction: XSCANS. Program(s) used to solve structure: SHELXTL/PC (Sheldrick, 1995). Program(s) used to refine structure: SHELXTLPC. Molecular graphics: SHELXTL/PC. Software used to prepare material for publication: SHELXTL/PC.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: NA1300). Services for accessing these data are described at the back of the journal.

References

Alcock, N. W. (1972). J. Chem. Soc. Dalton Trans. pp. 1189-1192. Alcock, N. W. \& Tracy, V. L. (1979). Acta Cryst. B35, 80-83. De Vos, D., Spierenberg, J. \& Wolters, J. (1972). Recl. Trav. Chim. 91, 1465-1468.

Fait, J (1991). XSCANS Users Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Kamenar. B. (1963). Acta Cryst. 16, A-34.
Sheldrick, G. M. (1990). SHELXTL/PC Users Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1995). SHELXTL/PC. Version 5.03. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. \& Taylor, R. (1975). Acta Cryst. B31, 2740-2741.

Acta Cryst. (1997). C53, 1602-1605

Steric Hindrance in a Mixed Solvated Nickel(II) Complex: Bis(acetonitrile- N)tetrakis(N, N-dimethylacetamide- O)nickel(II) Bis(tetrafiuoroborate)

Honoh Suzuki and Shin-ich Ishiguro

Department of Chemistry, Kyushu University, 6-10-1
Hakozaki Higashi-ku, Fukuoka 812-81, Japan. E-mail:
suzukscc@mbox.nc.kyushu-u.ac.jp
(Received 6 March 1997; accepted 26 June 1997)

Abstract

The title compound, $\left[\mathrm{Ni}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}\left\{\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NCOCH}_{3}\right\}_{4}\right]$ $\left(\mathrm{BF}_{4}\right)_{2}$, has an octahedral coordination structure with the centre of symmetry at the Ni atom. Both of the two crystallographically inequivalent N, N-dimethylacetamide (DMA) molecules have normal coordination NiO bond lengths and $\mathrm{Ni}-\mathrm{O}-\mathrm{C}$ angles, but one of the $\mathrm{Ni}-\mathrm{O}-\mathrm{C}-\mathrm{N}$ torsion angles deviates from 180°, indicating that the $\mathrm{Ni}-\mathrm{O}$ bond is displaced from the direction of the lone pair of the $s p^{2}-\mathrm{O}$ atom. This is ascribed to the steric hindrance of DMA coordination in an octahedral environment, which is imposed by the non-bonding contact of the acetyl methyl group with the ligating O atom of the adjacent DMA molecule.

Comment

Our thermodynamic studies of complexation equilibria in DMA solution have revealed activation of the solvated metal ions (Suzuki \& Ishiguro, 1992). Unusual coordination structures such as five-coordinate $\left[\mathrm{NiCl}(\mathrm{DMA})_{4}\right]^{+}$are also found in DMA. Because this solvent effect is encountered in various metal-ligand systems but never observed in an analogous solvent N, N-dimethylformamide (DMF), we have ascribed it to the steric hindrance of the acetyl methyl group of DMA, which may destabilize the solvation structure and cause the less-crowded complexes to emerge in solution. The difference between DMA and DMF disappears in the
case of tetrahedral complexes, which also supports the idea (Koide, Suzuki \& Ishiguro, 1995).

An EXAFS study in DMF and DMA solutions, however, showed no difference in the solvation structures of bivalent transition metal ions except for Zn^{2+}; all the ions but Zn^{2+} have an octahedral coordination structure $\left[M^{11}(\text { solvent })_{6}\right]^{2+}(M=\mathrm{Mn}, \mathrm{Co}, \mathrm{Ni}, \mathrm{Cu})$ and the $M-\mathrm{O}$ bond lengths are almost identical in the two solvents (Ozutsumi, Koide, Suzuki \& Ishiguro, 1993). To clarify detailed structural features of the steric hindrance in DMA coordination, we have isolated a hygroscopic crystal of the title compound, (I), from a mixture of acetonitrile and diethyl ether, and performed an X-ray diffraction analysis on the single crystal.

(I)

The structure (Fig. 1) shows that the Ni^{2+} ion has a centrosymmetric octahedral coordination environment in which both acetonitrile and DMA coordinate. Both of the crystallographically inequivalent DMA molecules have normal bond lengths $(\mathrm{Ni}-\mathrm{O})$ and angles $(\mathrm{Ni}-$ O-C) (Herceg \& Fischer, 1974; Lemoine \& Herpin, 1980; Ozutsumi et al., 1993). Nevertheless, the Ni-$\mathrm{O}-\mathrm{C}-\mathrm{N}(\tau)$ torsion angles in Table 2, which serve as a measure of coplanarity between the metal and the molecular plane of DMA, indicate that the coordinating conformation of the two DMA molecules is clearly distinguishable: 'regular' and 'twisted'. One of the DMA molecules (Ol-C14) is almost coplanar with Ni ($\tau=-170^{\circ}$), and the coordination occurs approximately in the direction of the lone pair of the $s p^{2}-\mathrm{O}$ atom. The other (O2-C24), however, has $\tau=-113^{\circ}$; thus, the metal is largely out of the DMA molecular plane, i.e. the coordinated DMA is twisted around the $\mathrm{O} 2-\mathrm{C} 21$ bond.

Similar distortion is found in $\left[\mathrm{Cu}(\mathrm{DMA})_{4}\left(\mathrm{ClO}_{4}\right)_{2}\right]$, where two of the DMA molecules have $\tau(\mathrm{Cu}-\mathrm{O}$ -$\mathrm{C}-\mathrm{N})=-165^{\circ}$ and the other two have $\tau=125^{\circ}$ (Lemoine \& Herpin, 1980). On the other hand, all the $\tau(M-\mathrm{O}-\mathrm{C}-\mathrm{N})$ torsion angles are $172-176^{\circ}$ in tetrahedral coordination structures $\left[M^{\mathrm{if}} \mathrm{Cl}_{2}(\mathrm{DMA})_{2}\right](M=$ Co, Zn) (Lindner, Perdikatsis \& Thasitis, 1973; Herceg \& Fischer, 1974). In DMF solvates, the torsion angles are 161-179 ${ }^{\circ}$ both in octahedral (Baumgartner, 1986; Young, Walters \& Dewan, 1989) and tetrahedral structures (Suzuki, Fukushima, Ishiguro, Masuda \& Ohtaki, 1991). Accordingly, the acetyl methyl group of DMA

